SPRING 2025 MATH 590: QUIZ 9
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1. Find the singular value decomposition of the matrix A= |1 0 |. (5 points)
0 1
1 1 0 Lt 2 1
Solution. A*A = 1 0] = cpara(z) =(x—2)>—-1=2>—4x+3 = (x — 3)(x — 1). Therefore
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FEs3 = null space of -1 — 11 which has basis uy = [ Y2 |.
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FE1 = null space of <1 1) — L 1> which has basis u; = < V2 ) Set P = <\{§ _‘/§ ) = pt.
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Set v1 = %Aul = % 1 0 (@) = % , Uy = %Auz =11 0 (_@) = % . Notethat v = | 1
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is orthogonal to v1, v2, so we take vs = Upon taking Q % 75| we have the singular value

decomposition A = QY P".
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2. For A= (1 0], consider the system of equations A - (i) = | 2 |. Show that this system of equation has no
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solution, and then find the best approximate solution by first calculating the pseudo-inverse A™. (5 points)

Solution. From the first and second equations we have x = 2 and y = 3. But then, y = 3 does not satisfy the third
—-= 0
equation. Moreover, we have AT = PS"1 Q?, for P,Q, 3" as above, and where 3.7 = \65 . ) Thus
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