SPRING 2025 MATH 590: QUIZ 9

Name:

1. Find the singular value decomposition of the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$. (5 points)

Solution.
$$A^{t}A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
. $p_{A^{t}A}(x) = (x-2)^{2} - 1 = x^{2} - 4x + 3 = (x-3)(x-1)$. Therefore $\sigma_{1} = \sqrt{3}, \sigma_{2} = 1, \Sigma = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.
 $E_{3} = \text{ null space of } \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ which has basis $u_{1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.
 $E_{1} = \text{ null space of } \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ which has basis $u_{1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. Set $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = P^{t}$.
Set $v_{1} = \frac{1}{\sqrt{3}}Au_{1} = \frac{1}{\sqrt{3}}\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$, $v_{2} = \frac{1}{1}Au_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$. Note that $v_{3} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ is orthogonal to v_{1}, v_{2} , so we take $v_{3} = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$. Upon taking $Q = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$, we have the singular value decomposition $A = Q \sum P^{t}$.

decomposition $A = Q \sum P^t$.

2. For $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$, consider the system of equations $A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 6 \end{pmatrix}$. Show that this system of equation has no

solution, and then find the best approximate solution by first calculating the pseudo-inverse A^+ . (5 points) Solution. From the first and second equations we have x = 2 and y = 3. But then, y = 3 does not satisfy the third equation. Moreover, we have $A^+ = P \sum^+ Q^t$, for P, Q, \sum as above, and where $\sum^+ = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$. Thus

$$A^{+} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Thus, the best approximate colution to the given system of equations is

(--)

Thus, the best approximate solution to the given system of equations is

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^+ \begin{pmatrix} 5 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}.$$